Application of Hierarchical Matrices to Linear Inverse Problems in Geostatistics
نویسندگان
چکیده
Application of Hierarchical Matrices to Linear Inverse Problems in Geostatistics — Characterizing the uncertainty in the subsurface is an important step for exploration and extraction of natural resources, the storage of nuclear material and gasses such as natural gas or CO2. Imaging the subsurface can be posed as an inverse problem and can be solved using the geostatistical approach [Kitanidis P.K. (2007) Geophys. Monogr. Ser. 171, 19-30, doi:10.1029/171GM04; Kitanidis (2011) doi: 10.1002/9780470685853. ch4, pp. 71-85] which is one of the many prevalent approaches. We briefly describe the geostatistical approach in the context of linear inverse problems and discuss some of the challenges in the large-scale implementation of this approach. Using the hierarchical matrix approach, we show how to reduce matrix vector products involving the dense covariance matrix from O(m2) to O(m log m), where m is the number of unknowns. Combined with a matrix-free Krylov subspace solver, this results in a much faster algorithm for solving the system of equations that arise from the geostatistical approach. We illustrate the performance of our algorithm on an application, for monitoring CO2 concentrations using crosswell seismic tomography. 2 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles
منابع مشابه
A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملApplication of different inverse methods for combination of vS and vGPR data to estimate porosity and water saturation
Inverse problem is one of the most important problems in geophysics as model parameters can be estimated from the measured data directly using inverse techniques. In this paper, applying different inverse methods on integration of S-wave and GPR velocities are investigated for estimation of porosity and water saturation. A combination of linear and nonlinear inverse problems are solved. Linear ...
متن کاملInverse Young inequality in quaternion matrices
Inverse Young inequality asserts that if $nu >1$, then $|zw|ge nu|z|^{frac{1}{nu}}+(1-nu)|w|^{frac{1}{1-nu}}$, for all complex numbers $z$ and $w$, and equality holds if and only if $|z|^{frac{1}{nu}}=|w|^{frac{1}{1-nu}}$. In this paper the complex representation of quaternion matrices is applied to establish the inverse Young inequality for matrices of quaternions. Moreover, a necessary and ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کامل